Publications

You can also find my articles on my Google Scholar profile.

Conference Papers


LibreLog: Accurate and Efficient Unsupervised Log Parsing Using Open-Source Large Language Models

Published in International Conference in Software Engineering, 2025

Log parsing is a critical step that transforms unstructured log data into structured formats, facilitating subsequent log-based analysis. Traditional syntax-based log parsers are efficient and effective, but they often experience decreased accuracy when processing logs that deviate from the predefined rules. Recently, large language models (LLM) based log parsers have shown superior parsing accuracy. However, existing LLM-based parsers face three main challenges: 1)time-consuming and labor-intensive manual labeling for fine-tuning or in-context learning, 2)increased parsing costs due to the vast volume of log data and limited context size of LLMs, and 3)privacy risks from using commercial models like ChatGPT with sensitive log information. To overcome these limitations, this paper introduces LibreLog, an unsupervised log parsing approach that leverages open-source LLMs (i.e., Llama3-8B) to enhance privacy and reduce operational costs while achieving state-of-the-art parsing accuracy. LibreLog first groups logs with similar static text but varying dynamic variables using a fixed-depth grouping tree. It then parses logs within these groups using three components: i)similarity scoring-based retrieval augmented generation: selects diverse logs within each group based on Jaccard similarity, helping the LLM distinguish between static text and dynamic variables; ii)self-reflection: iteratively query LLMs to refine log templates to improve parsing accuracy; and iii) log template memory: stores parsed templates to reduce LLM queries for improved parsing efficiency. Our evaluation on LogHub-2.0 shows that LibreLog achieves 25% higher parsing accuracy and processes logs 2.7 times faster compared to state-of-the-art LLM-based parsers. In short, LibreLog addresses privacy and cost concerns of using commercial LLMs while achieving state-of-the-arts parsing efficiency and accuracy.

Recommended citation: Ma, Zeyang, Dong Jae Kim, and Tse-Hsun Chen. "LibreLog: Accurate and Efficient Unsupervised Log Parsing Using Open-Source Large Language Models." arXiv preprint arXiv:2408.01585 (2025).
Download Paper

SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents

Published in International Conference in Software Engineering, 2024

Software process models are essential to facilitate collaboration and communication among software teams to solve complex development tasks. Inspired by these software engineering practices, we present FlowGen - a code generation framework that emulates software process models based on multiple Large Language Model (LLM) agents. We emulate three process models, FlowGenWaterfall, FlowGenTDD, and FlowGenScrum, by assigning LLM agents to embody roles (i.e., requirement engineer, architect, developer, tester, and scrum master) that correspond to everyday development activities and organize their communication patterns. The agents work collaboratively using chain-of-thought and prompt composition with continuous self-refinement to improve the code quality. We use GPT3.5 as our underlying LLM and several baselines (RawGPT, CodeT, Reflexion) to evaluate code generation on four benchmarks: HumanEval, HumanEval-ET, MBPP, and MBPP-ET. Our findings show that FlowGenScrum excels compared to other process models, achieving a Pass@1 of 75.2, 65.5, 82.5, and 56.7 in HumanEval, HumanEval-ET, MBPP, and MBPP-ET, respectively (an average of 15% improvement over RawGPT). Compared with other state-of-the-art techniques, FlowGenScrum achieves a higher Pass@1 in MBPP compared to CodeT, with both outperforming Reflexion. Notably, integrating CodeT into FlowGenScrum resulted in statistically significant improvements, achieving the highest Pass@1 scores. Our analysis also reveals that the development activities impacted code smell and exception handling differently, with design and code review adding more exception handling and reducing code smells. Finally, FlowGen models maintain stable Pass@1 scores across GPT3.5 versions and temperature values, highlighting the effectiveness of software process models in enhancing the quality and stability of LLM-generated code.

Recommended citation: Lin, Feng, and Dong Jae Kim. "When llm-based code generation meets the software development process." ICSE (2025).
Download Paper